A second-order accurate difference scheme for an extended Fisher–Kolmogorov equation
نویسندگان
چکیده
منابع مشابه
A Fourth Order Accurate Finite Difference Scheme for the Elastic Wave Equation in Second Order Formulation
We present a fourth order accurate finite difference method for the elastic wave equation in second order formulation, where the fourth order accuracy holds in both space and time. The key ingredient of the method is a boundary modified fourth order accurate discretization of the second derivative with variable coefficient, (μ(x)ux)x. This discretization satisfies a summation by parts identity ...
متن کاملUncountably many bounded positive solutions for a second order nonlinear neutral delay partial difference equation
In this paper we consider the second order nonlinear neutral delay partial difference equation $Delta_nDelta_mbig(x_{m,n}+a_{m,n}x_{m-k,n-l}big)+ fbig(m,n,x_{m-tau,n-sigma}big)=b_{m,n}, mgeq m_{0},, ngeq n_{0}.$Under suitable conditions, by making use of the Banach fixed point theorem, we show the existence of uncountably many bounded positive solutions for the above partial difference equation...
متن کاملSTUDYING THE BEHAVIOR OF SOLUTIONS OF A SECOND-ORDER RATIONAL DIFFERENCE EQUATION AND A RATIONAL SYSTEM
In this paper we investigate the behavior of solutions, stable and unstable of the solutions a second-order rational difference equation. Also we will discuss about the behavior of solutions a the rational system, we show these solutions may be stable or unstable.
متن کاملA second-order accurate non-linear difference scheme for the N-component Cahn–Hilliard system
We consider a second-order conservative nonlinear numerical scheme for the Ncomponent Cahn–Hilliard system modeling the phase separation of a N-component mixture. The scheme is based on a Crank–Nicolson finite-difference method and is solved by an efficient and accurate nonlinear multigrid method. We numerically demonstrate the second-order accuracy of the numerical scheme. We observe that our ...
متن کاملA Second-order Finite Difference Scheme for a Type of Black-Scholes Equation
In this paper we consider a backward parabolic partial differential equation, called the Black-Scholes equation, governing American and European option pricing. We present a numerical method combining the Crank-Nicolson method in the time discretization with a hybrid finite difference scheme on a piecewise uniform mesh in the spatial discretization. The difference scheme is stable for the arbit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2011
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2010.11.022